4.2.1 Tipos de matrices (cuadrada, rectangular, triangular, matriz identidad, matriz transpuesta).
Matriz fila
Una matriz fila está constituida por una sola fila.

Matriz columna
La matriz columna tiene una sola columna

Matriz rectangular
La matriz rectangular tiene distinto número de filas que de columnas, siendo su dimensión mxn.

Matriz traspuesta
Dada una matriz A, se llama matriz traspuesta de A a la matriz que se obtiene cambiando ordenadamente las filas por las columnas.

(At)t = A
(A + B)t = At + Bt
(α ·A)t = α· At
(A · B)t = Bt · At
Matriz nula
En una matriz nula todos los elementos son ceros.

Matriz cuadrada
La matriz cuadrada tiene el mismo número de filas que de columnas.
Los elementos de la forma aii constituyen la diagonal principal.
La diagonal secundaria la forman los elementos con i+j = n+1, siendo n el orden de la matriz.

Tipos de matrices cuadradas
Matriz triangular superior
En una matriz triangular superior los elementos situados por debajo de la diagonal principal son ceros.

Matriz triangular inferior
En una matriz triangular inferior los elementos situados por encima de la diagonal principal son ceros.

Matriz diagonal
En una matriz diagonal todos los elementos que no están situados en la diagonal principal son nulos.

Matriz escalar
Una matriz escalar es una matriz diagonal en la que los elementos de la diagonal principal son iguales.

Matriz identidad o unidad
Una matriz identidad es una matriz diagonal en la que los elementos de la diagonal principal son iguales a 1.

Matriz regular
Una matriz regular es una matriz cuadrada que tiene inversa.
Matriz singular
Una matriz singular no tiene matriz inversa.
Matriz idempotente
Una matriz, A, es idempotente si:
A2 = A.
Matriz involutiva
Una matriz, A, es involutiva si:
A2 = I.
Matriz simétrica
Una matriz simétrica es una matriz cuadrada que verifica:
A = At.
Matriz antisimétrica o hemisimétrica
Una matriz antisimétrica o hemisimétrica es una matriz cuadrada que verifica:
A = −At.
Matriz ortogonal
Una matriz es ortogonal si verifica que:
A . A^t = I
math2me. (2014). Suma y resta de matrices. noviembre 30. 2015, de youtube Sitio web: https://youtu.be/DgQuy_wbVZE
4.2.3 Propiedades de las operaciones con matrices.
Jarne. G, Minguillón. E & Zobal T.. (2015). OPERACIONES CON MATRICES. OROPIEDADES. noviembre 30, 2015, de google Sitio web: http://www.unizar.es/aragon_tres/unidad6/Matrices/u6matte30.pdf
4.2.4 Matriz inversa.
Si premultiplicamos (multiplicamos por la izquierda) o posmultiplicamos (multiplicamos por la derecha) una matriz cuadrada por su inversa obtenemos la matriz identidad.
A · A−1 = A−1 · A = I
Propiedades
1 (A · B)−1 = B−1 · A−1
2 (A−1)−1 = A
3 (k · A)−1 = k−1 · A−1
4 (At)−1 = (A−1)t
Cálculo por el método de Gauss
Sea A una matriz cuadrada de orden n. Para calcular la matriz inversa de A, que denotaremos como A−1, seguiremos los siguientes pasos:
1 Construir una matriz del tipo M = (A | I), es decir, A está en la mitad izquierda de M y la matriz identidad I en la derecha.
Consideremos una matriz 3x3 arbitraria:

La ampliamos con la matriz identidad de orden 3.

2 Utilizando el método Gauss vamos a transformar la mitad izquierda, A, en la matriz identidad, que ahora está a la derecha, y la matriz que resulte en el lado derecho será la matriz inversa: A−1.
F2 = F2 − F1

F3 = F3 + F2

F2 = F2 − F3

F1 = F1 + F2

F2 = (−1) F2

La matriz inversa es:

Muy buen blog, la información es muy buena y aclara dudas con los videos que muestras
ResponderBorrar