lunes, 30 de noviembre de 2015

4.2 Álgebra de Matrices

El concepto de matriz alcanza múltiples aplicaciones tanto en la representación y manipulación de datos como en el cálculo numérico y simbólico que se deriva de los modelos matemáticos utilizados para resolver problemas en diferentes disciplinas como, por ejemplo, las ciencias sociales, las ingenierías, economía, física, estadística y las diferentes ramas de las matemáticas entre las que destacamos las ecuaciones diferenciales, el cálculo numérico y, por supuesto, el álgebra


4.2.1 Tipos de matrices (cuadrada, rectangular, triangular, matriz identidad, matriz transpuesta).





Matriz fila

Una matriz fila está constituida por una sola fila.
columna

Matriz columna

La matriz columna tiene una sola columna
columna

Matriz rectangular

La matriz rectangular tiene distinto número de filas que de columnas, siendo su dimensión mxn.
Rectangular

Matriz traspuesta

Dada una matriz A, se llama matriz traspuesta de A a la matriz que se obtiene cambiando ordenadamente las filas por las columnas.
matrices traspuestas
(At)t = A
(A + B)t = At + Bt
(α ·A)t = α· At
(A ·  B)t = Bt · At

Matriz nula

En una matriz nula todos los elementos son ceros.
matriz nula

Matriz cuadrada

La matriz cuadrada tiene el mismo número de filas que de columnas.
Los elementos de la forma aii constituyen la diagonal principal.
La diagonal secundaria la forman los elementos con i+j = n+1, siendo n el orden de la matriz.
Cuadrada

Tipos de matrices cuadradas

Matriz triangular superior

En una matriz triangular superior los elementos situados por debajo de la diagonal principal son ceros.
Matriz triangular superior

Matriz triangular inferior

En una matriz triangular inferior los elementos situados por encima de la diagonal principal son ceros.
inferior

Matriz diagonal

En una matriz diagonal todos los elementos que no están situados en la diagonal principal son nulos.
diagonal

Matriz escalar

Una matriz escalar es una matriz diagonal en la que los elementos de la diagonal principal son iguales.
Escalar

Matriz identidad o unidad

Una matriz identidad es una matriz diagonal en la que los elementos de la diagonal principal son iguales a 1.
identidad

Matriz regular

Una matriz regular es una matriz cuadrada que tiene inversa.

Matriz singular

Una matriz singular no tiene matriz inversa.

Matriz idempotente

Una matriz, A, es idempotente si:
A2 = A.

Matriz involutiva

Una matriz, A, es involutiva si:
A2 = I.

Matriz simétrica

Una matriz simétrica es una matriz cuadrada que verifica:
A = At.

Matriz antisimétrica o hemisimétrica

Una matriz antisimétrica o hemisimétrica es una matriz cuadrada que verifica:
A = −At.

Matriz ortogonal

Una matriz es ortogonal si verifica que:
A . A^t = I


4.2.2 Operaciones con matrices (suma, diferencia, multiplicación por escalar y producto de matrices).



math2me. (2014). Suma y resta de matrices. noviembre 30. 2015, de youtube Sitio web: https://youtu.be/DgQuy_wbVZE



4.2.3 Propiedades de las operaciones con matrices.







Jarne. G, Minguillón. E & Zobal T.. (2015). OPERACIONES CON MATRICES. OROPIEDADES. noviembre 30, 2015, de google Sitio web: http://www.unizar.es/aragon_tres/unidad6/Matrices/u6matte30.pdf

4.2.4 Matriz inversa.
Si premultiplicamos (multiplicamos por la izquierda) o posmultiplicamos (multiplicamos por la derecha) una matriz cuadrada por su inversa obtenemos la matriz identidad.
A · A−1  = A−1 · A = I

Propiedades

 1  (A · B)−1  = B−1 · A−1
 2  (A−1)−1  = A
 3  (k · A)−1  = k−1 · A−1
 4  (At)−1  = (A−1)t

Cálculo por el método de Gauss

Sea A una matriz cuadrada de orden n. Para calcular la matriz inversa de A, que denotaremos como A−1, seguiremos los siguientes pasos:
 1  Construir una matriz del tipo M = (A | I), es decir, A está en la mitad izquierda de M y la matriz identidad I en la derecha.
Consideremos una matriz 3x3 arbitraria:
Matriz
La ampliamos con la matriz identidad de orden 3.
paso 1º
 2  Utilizando el método Gauss vamos a transformar la mitad izquierda, A, en la matriz identidad, que ahora está a la derecha, y la matriz que resulte en el lado derecho será la matriz inversa: A−1.
F2 = F2 − F1
PASO 2º
F3 = F3 + F2
PASO 3º
F2 = F2 − F3
PASO 4º
F1 = F1 + F2
PASO 5º
F2 = (−1) F2
PASO 6º
La matriz inversa es:
Inversa

1 comentario:

  1. Muy buen blog, la información es muy buena y aclara dudas con los videos que muestras

    ResponderBorrar